f07 — Linear Equations (LAPACK) f07ghce

1

NAG C Library Function Document

nag_dpprfs (f07ghc)

Purpose

nag_dpprfs (f07ghc) returns error bounds for the solution of a real symmetric positive-definite system of
linear equations with multiple right-hand sides, AX = B, using packed storage. It improves the solution
by iterative refinement, in order to reduce the backward error as much as possible.

2

Specification

void nag_dpprfs (Nag_OrderType order, Nag_UploType uplo, Integer n, Integer nrhs,

3

const double ap[], const double afp[], const double b[], Integer pdb,
double x[], Integer pdx, double ferr[], double berr[], NagError xfail)

Description

nag_dpprfs (f07ghc) returns the backward errors and estimated bounds on the forward errors for the
solution of a real symmetric positive-definite system of linear equations with multiple right-hand sides
AX = B, using packed storage. The function handles each right-hand side vector (stored as a column of
the matrix B) independently, so we describe the function of nag_dpprfs (f07ghc) in terms of a single right-
hand side b and solution z.

Given a computed solution x, the function computes the component-wise backward error B. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a
perturbed system

(A+8A) = b+ 6b
|6a;j| < Bla;;| and [6b;| < B[by].

Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max |z; — Z;|/ max |z,
1 1

where z is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint. order = Nag_RowMajor or Nag_ColMajor.

uplo — Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how A has been
factorized, as follows:

[NP3645/7] f07ghe.1

f07ghc NAG C Library Manual

if uplo = Nag_Upper, the upper triangular part of A is stored and A is factorized as U’ U,
where U is upper triangular;

if uplo = Nag_Lower, the lower triangular part of A is stored and A is factorized as LL”,
where L is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

4: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

5: ap[dim| — const double Input
Note: the dimension, dim, of the array ap must be at least max(l,n x (n+1)/2).
On entry: the n by n original symmetric positive-definite matrix A as supplied to nag_dpptrf
(f07gdc).

6: afp[dim] — const double Input
Note: the dimension, dim, of the array afp must be at least max(l,n x (n+1)/2).

On entry: the Cholesky factor of A stored in packed form, as returned by nag dpptrf (f07gdc).

7: b[dim] — const double Input

Note: the dimension, dim, of the array b must be at least max(l,pdb x nrhs) when
order = Nag_ColMajor and at least max(1,pdb x n) when order = Nag_ RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (4, j)th element of the matrix B is stored in b[(i — 1) x pdb + j — 1].

On entry: the n by r right-hand side matrix B.

8: pdb — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.
Constraints:

if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag_RowMajor, pdb > max(1, nrhs).
9: x[dim] — double Input/Output

Note: the dimension, dim, of the array x must be at least max(l,pdx x nrhs) when
order = Nag_ColMajor and at least max(1, pdx x n) when order = Nag RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix X is stored in x[(j — 1) x pdx +4 — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + j — 1].

On entry: the n by r solution matrix X, as returned by nag_dpptrs (f07gec).

On exit: the improved solution matrix X.

10: pdx — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

f07ghc.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07ghce

11:

Constraints:

if order = Nag_ColMajor, pdx > max(1,n);

if order = Nag_RowMajor, pdx > max(1, nrhs).
ferr[dim] — double Output
Note: the dimension, dim, of the array ferr must be at least max(1, nrhs).

On exit: ferr[j — 1] contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j=1,2,... 7

12 berr[dim]| — double Output
Note: the dimension, dim, of the array berr must be at least max(1, nrhs).
On exit: berr[j — 1] contains the component-wise backward error bound [for the jth solution
vector, that is, the jth column of X, for j =1,2,....n.
13: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).
6 Error Indicators and Warnings
NE_INT
On entry, n = (value).
Constraint: n > 0.
On entry, nrhs = (value).
Constraint: nrhs > 0.
On entry, pdb = (value).
Constraint: pdb > 0.
On entry, pdx = (value).
Constraint: pdx > 0.
NE_INT 2

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

On entry, pdx = (value), n = (value).
Constraint: pdx > max(1,n).

On entry, pdx = (value), nrhs = (value).
Constraint: pdx > max(1, nrhs).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

[NP3645/7] f07ghc.3

f07ghc NAG C Library Manual

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 4n* floating-point

operations. Each step of iterative refinement involves an additional 6n” operations. At most 5 steps of
iterative refinement are performed, but usually only 1 or 2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form Az = b;

the number is usually 4 or 5 and never more than 11. Each solution involves approximately 27>
operations.

The complex analogue of this function is nag_zpprfs (f07gvc).

9 Example

To solve the system of equations AX = B using iterative refinement and to compute the forward and
backward error bounds, where

416 —3.12 056 —0.10 870 830
312 503 —083 1.18 ~1335 2.13
A=1 056 —083 076 o034]| d B= 1.89 1.61
~0.10 1.18 034 1.8 —4.14 5.00

Here A is symmetric positive-definite, stored in packed form, and must first be factorized by nag_dpptrf
(f07gdc).

9.1 Program Text

/* nag_dpprfs (f07ghc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */
Integer i, j, n, nrhs, ap_len, afp_len, pdb, pdx, ferr_len, berr_ len;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo_enum;
Nag_OrderType order;
/* Arrays */
char uplo[2];
double *afp=0, *ap=0, *b=0, *berr=0, *ferr=0, *x=0;

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I,J) apl[J*(J-1)/2 + I - 1]
#define A_LOWER(I,J) apl(2*n-J)*(J-1)/2 + I - 1]
#define B(I,J) b[(J-1)#*pdb + I - 1]
#define X(I,J) x[(J-1)*pdx + I - 1]
order = Nag_ColMajor;
#else
#define A_LOWER(I,J) apl[I*(I-1)/2 + J - 1]

f07ghc.4 [NP3645/7]

f07 — Linear Equations (LAPACK)

#define A_UPPER(I,J)
#define B(I,J) b[(I-1
#define X(I,J) x[(I-1

order = Nag_RowMajo
#endif

INIT FAIL(fail);

Vprintf ("f07ghc Example Program Results\n\n");

/* Skip heading in
Vscanf ("s*[*\n] ");
Vscanf ("%$1ds1lds*["\
ap_len = n * (n + 1
afp_len = n * (n +

#ifdef NAG_COLUMN_MAJ
pdb = n;
pdx = n;

#else
pdb = nrhs;
pdx = nrhs;

#endif
ferr_len = nrhs;
berr_len = nrhs;

/* Allocate memory
if (!(afp = NAG_AL
! (ap = NAG_ALL
(b = NAG_ALLO
! (berr = NAG_A
! (ferr = NAG_A
! (x = NAG_ALLO

Vprintf ("Alloca
exit_status = -
goto END;

}

/* Read A and B fro

Vscanf (" /' %1ls "%*[
if (*(unsigned char
uplo_enum = Nag_L
else if (*(unsigned
uplo_enum = Nag_U
else

{

Vprintf ("Unrecognised character for Nag_UploType type\n");

exit_status = -
goto END;
}

apl(2#%n-I)*(I-1)/2 + J - 1]
y*pdb + J - 1]

)*pdx + J - 1]

r;

data file */

n] ", &n, &nrhs);
)/2;

1)/2;

OR

*/

LOC(ap_len, double))

OC(afp_len, double))

C(n * nrhs, double))

LLOC(berr_len, double
le
)

—_ — —

LLOC(ferr_len, doub
C(n * nrhs, double)

tion failure\n");
1;

m data file, and copy A to AFP and B to X */

“\n] ", uplo);

*)uplo == 'L’)
ower ;

char *)uplo == 'U')
pper;

1;

if (uplo_enum == Nag_Upper)

{
for (1 =1; 1 <
{
for (3 = 1i;
Vscanf ("%
¥
Vscanf ("$x["\n]
}
else
{
for (i = 1; i <
{
for (3 = 1;
Vscanf ("%
¥

Vscanf ("%x [*"\n]
for (i = 1; 1 <= n;

for (j = 1; j <

[NP3645/7]

= n; ++1i)

j <= n; ++3)
1f", &A_UPPER(i,j));

ll);

= n; ++1i)

J <= i; ++j)
1f", &A_LOWER(i,j));

") ;
++1)

= nrhs; ++3j)

f07ghc

f07ghc.5

f07ghc NAG C Library Manual

Vscanf ("$1f", &B(i,3));

}
Vscanf ("s*[*\n] ");
for (1 =0; i <n* (n+ 1) / 2; ++1)
afpli] = aplil];
for (i = 1; i <= n; ++1i)
{
for (j = 1; j <= nrhs; ++j)
X(i,3) = B(i,3);
}

/* Factorize A in the array AFP */
fO07gdc(order, uplo_enum, n, afp, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f£07gdc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Compute solution in the array X */
fO7gec(order, uplo_enum, n, nrhs, afp, x, pdx, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f07gec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Improve solution, and compute backward errors and */
/* estimated bounds on the forward errors */
f07ghc(order, uplo_enum, n, nrhs, ap, afp, b, pdb, x, pdx, ferr, berr,

&fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f07ghc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print solution */
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,
"Solution(s)", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from xO4cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf ("\nBackward errors (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)
Vprintf ("s1ll.le%s", berr[j-1]1, j%7==0 2"\n":" ");
Vprintf ("\nEstimated forward error bounds (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)

Vprintf ("$11l.1le%s", ferr([j-1]1, j%7==0 2"\n":" ");

Vprintf ("\n") ;
END:

if (afp) NAG_FREE (afp);

if (ap) NAG_FREE (ap);

if (b) NAG_FREE(b);

if (berr) NAG_FREE (berr);

if (ferr) NAG_FREE(ferr);

if (x) NAG_FREE(x);
return exit_status;

9.2 Program Data

f07ghc Example Program Data

4 2 :Values of N and NRHS
'L’ :Value of UPLO

4.16
-3.12 5.03

0.56 -0.83 0.76

f07ghc.6 [NP3645/7]

f07 — Linear Equations (LAPACK)

-0.10
8.70
-13.35
1.89
-4.14

U= N R

.18
.30
.13
.61
.00

0.34 1.18

9.3 Program Results

f07ghc Example Program Results

Solution(s

)

1
1 1.0000
2 -1.0000
3 2.0000
4 -3.0000

Backward errors

8.3e-17

Estimated forward error bounds

2.4e-14

2
4.0000
3.0000
2.0000
1.0000

:End of matrix A

:End of matrix B

(machine-dependent)

5.2e-17

2.2e-14

(machine-dependent)

f07ghc

[NP3645/7]

f07ghc.7 (last)

	f07ghc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	nrhs
	ap
	afp
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

